直腸超聲圖像實時增強現實指導機器人輔助腹腔鏡直腸手術:概念研究證明目的由于位置較低,低位直腸手術往往需要采取謹慎的措施。手術能否成功,在很大程度上取決于外科醫生確定直腸清晰遠端邊緣的能力。這對于使用機器人輔助腹腔鏡手術的外科醫師來說是一個挑戰,因為通常隱藏在直腸中,且機器人外科手術器械不能為組織診斷提供實時的觸覺反饋。本文介紹了機器人輔助直腸手術基于術中超聲的增強現實手術指導框架的開發和評估。方法框架的實現包括校準經直腸超聲(TRUS)和內窺鏡攝像頭(手眼校準),生成虛擬模型,通過光學定位導航系統/光學追蹤,將其記錄在內窺鏡圖像上,并將增強視圖在頭戴式顯示器上顯示。實驗驗證設置旨在評估該框架。結果評估過程產生的TRUS校準平均誤差為,內窺鏡相機手眼校準的比較大誤差為,整個框架比較大RMS誤差為。在直腸影像的實驗中,我們的框架將指導外科醫生準確定位模擬和遠端切除切緣。結論該框架是根據實際臨床情況與Atracsys的臨床合作伙伴共同開發的。實驗方案和較高的精度展示了在手術流程中無縫集成此框架的可行性。新疆雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;福建雙目紅外光學價格多少
這就是新型的光學機械——籠式結構出現的原始動力應運而生。新一代的光學機械出現——籠式結構德國Linos公司在1960年前后提出了籠式結構的雛形,命名為Microbench,于1990年推向市場,如圖5所示。圖5Linos的固定光軸高度40mmLinos的Microbench的基本理念:光軸是以光學平臺為基準。從圖5中可以發現,系統中的元件利用機械加工的精度,保證了同軸,是有基準系統的。2000年以前,Linos公司在市場中都是一枝獨秀,非常受歡迎。但是Linos的籠式結構也有其局限性:這種結構的光軸高度只有40mm,用戶在使用該結構時,會受到限制。在歐洲的光電展上作者了解到,有很多用戶和Linos公司工作人員反映過光軸高度40mm過低的問題,包括作者本人也是反映了多次。需求是大的創新動力,美國Thorlabs(索雷博)公司在2000年以后推出了自己的籠式結構,使用支桿把系統調整到用戶所需要的高度,如圖6。圖6索雷博解決光軸高度的方案索雷博的這一方案立即受到客戶青睞,并一步步占領了歐美市場,推出了更多系統。圖7Linos的解決方案(光軸高度提高到100mm)2008年左右,Linos公司推出了100mm光軸高度的解決方案,如圖7所示。他們通過使用一根80mm以上的螺栓固定,然而該方案卻沒有得到用戶認可。浙江雙目紅外光學聯系地址云南雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;
500mm以上稱超長焦距。120相機的150mm的鏡頭相當于35mm相機的105mm鏡頭。由于長焦距的鏡頭過于笨重,所以有望遠鏡頭的設計,即在鏡頭后面加一負透鏡,把鏡頭的主平面前移,便可用較短的鏡體獲得鏡體獲得長焦距的效果。反射式望遠鏡頭是另一種超望遠鏡頭的設計,利用反射鏡面來構成影像,但因設計的關系無法裝設光圈,能以快門來調整曝光。微距鏡頭(marcolens)除作極近距離的微距攝影外,也可遠攝。按接口分類C型鏡頭法蘭焦距是安裝法蘭到入射鏡頭平行光的匯聚點之間的距離。法蘭焦距為。安裝羅紋為:直徑1in,32牙.in。鏡頭可以用在長度為(13mm)以內的線陣傳感器。但是,由于幾何變形和市場角特性,必須鑒別短焦鏡頭是否合用。如焦距為。如果利用法蘭焦距尺寸確定了鏡頭到列陣的距離,則對于物方放大倍數小于20倍時需增加鏡頭接圈。接圈加在鏡頭后面,以增加鏡頭到像的距離,以為多數鏡頭的聚焦范圍位5-10%。鏡頭接長距離為焦距/物方放大倍數。U型鏡頭一種可變焦距的鏡頭,其法蘭焦距為,安裝羅紋為M42×1。主要設計作35mm照片應用(如國產和進口的各種135相機鏡頭),可用于任何長度小于()的列陣。建議不要用短焦距鏡頭。特殊鏡頭如顯微放大系統。
PSTBase光學定位導航系統PSTBase是為仿真解決方案打造的理想光學追蹤系統PSTBase光學定位導航系統是專為滿足追蹤距離從20厘米至3米的用戶需求而設計。PSTBase光學追蹤系統適用于醫療仿真、工業仿真(汽車仿真、飛機駕駛艙模擬器)、手術導航、動作捕捉、機器視覺等領域。PST定位導航系列產品均為預校準、即插即用的高精度雙目紅外光學系統。每臺PSTBase都是完全單獨的追蹤單元。可直接開箱使用,無需校準且捕捉攝像頭無需進行注冊。PSTBase的數據結果通過USB接口進行傳輸。也可通過以太網進行完全透明分享,只需在另外一臺電腦上安裝客戶軟件并進行連接。此外系統軟件采用抗干擾算法,如抖動處理、有效屏蔽可見光環境干擾等,進一步保證了系統精度。系統軟件采用圖形化界面,具有3D建模、標記點編輯、6D工具制作、API接口等功能。貴州雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;
而精確度是指同一項目的測量彼此之間的接近程度。這樣,精度和準確性都是單獨的。換句話說,可能非常準確,但不是非常精確,反之亦然。達到較佳測量的準確度和精度都很高。飛鏢盤是演示精度和準確性之間差異的經典方法。盤中心是準心。飛鏢降落到離中心距離越近,其精度就越高。(左)如果飛鏢緊密地散布在中心附近,則既精確又精確。(中)如果所有的飛鏢都靠得很近,但是離中心很遠,即是精度,而不是準確度。(右)如果飛鏢既不靠近中心也不彼此靠近,則既沒有精度也沒有準確度。根據標準ISO5725-1,光學追蹤精度定義為真實性和精度的組合。真實度是測量值與真實位置之間的差;它通常由重復測量的平均值表示,通常指系統誤差。精度是可重復性的度量;它通常由重復測量的標準偏差表示,指的是隨機誤差和噪聲。表述上通常將高度依賴于空間中測量位置的光學追蹤系統的精度和準確度誤差定義為基準定位誤差(FLE)。光學追蹤系統的準確性術語“準確性”通常用于描述光學追蹤技術。但其應用和定義可能不一致。首先必須在應用精度和固有光學追蹤系統精度之間進行區分。應用程序準確性包括許多錯誤源:光學追蹤系統的固有精度(例如,相對于設備的工作空間中的測量位置)。浙江雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;重慶的雙目紅外光學公司地址
上海雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;福建雙目紅外光學價格多少
而精確度是指同一項目的測量彼此之間的接近程度。這樣,精度和準確性都是單獨的。換句話說,可能非常準確,但不是非常精確,反之亦然。達到比較好測量的準確度和精度都很高。飛鏢盤是演示精度和準確性之間差異的經典方法。盤中心是準心。飛鏢降落到離中心距離越近,其精度就越高。(左)如果飛鏢緊密地散布在中心附近,則既精確又精確。(中)如果所有的飛鏢都靠得很近,但是離中心很遠,即是精度,而不是準確度。(右)如果飛鏢既不靠近中心也不彼此靠近,則既沒有精度也沒有準確度。根據標準ISO5725-1,光學追蹤精度定義為真實性和精度的組合。真實度是測量值與真實位置之間的差;它通常由重復測量的平均值表示,通常指系統誤差。精度是可重復性的度量;它通常由重復測量的標準偏差表示,指的是隨機誤差和噪聲。表述上通常將高度依賴于空間中測量位置的光學追蹤系統的精度和準確度誤差定義為基準定位誤差(FLE)。光學追蹤系統的準確性術語“準確性”通常用于描述光學追蹤技術。但其應用和定義可能不一致。首先必須在應用精度和固有光學追蹤系統精度之間進行區分。應用程序準確性包括許多錯誤源:光學追蹤系統的固有精度(例如,相對于設備的工作空間中的測量位置)。福建雙目紅外光學價格多少
位姿科技(上海)有限公司是一家貿易型類企業,積極探索行業發展,努力實現產品創新。公司致力于為客戶提供安全、質量有保證的良好產品及服務,是一家私營獨資企業企業。公司業務涵蓋光學定位,光學導航,雙目紅外光學,光學追蹤,價格合理,品質有保證,深受廣大客戶的歡迎。位姿科技自成立以來,一直堅持走正規化、專業化路線,得到了廣大客戶及社會各界的普遍認可與大力支持。