Atracsys提供定制化光學定位導航解決方案Atracsys能滿足客戶高要求的嵌入式系統開發。憑借在電子、FPGA、光學、機械、高級和初級軟件編程方面的廣闊知識,Atracsys助力客戶項目轉化為成品。Atracsys可以涵蓋客戶項目的所有階段:可行性研究和基礎調研產品規格參數制定硬件/電力開發嵌入式軟件開發機械/光學設計產品量產準備廣闊的測試認證我們堅提供始終如一的品質、可靠性和魯棒性,來對客戶特定的軟硬件(精度級別、采集速度、工作量、擴展等)進行開發。部分定制開發項目-緊湊型手持式骨科手術導航追蹤系統Atracsys為NaviswissAG打造了創新的緊湊型手持導航追蹤系統。NaviswissAG小化并簡化了骨科的手術流程。使用8位匯編器編程微控制器在低功耗電子產品中實現。-鐵路軌道平整度測量系統基于FPGA的光學三角測量系統,使用高速線性CCD。-移動機器人障礙物檢測系統基于CMOS成像器和線激光的障礙物檢測系統,在FPGA中具有實時處理功能。千兆以太網通信。海南雙目紅外光學醫療設備價格,可以咨詢位姿科技(上海)有限公司;河南的雙目紅外光學公司聯系電話
NDI)和兩個EM追蹤器的腹腔鏡的追蹤準確性,該光學追蹤器追蹤安裝在軸上的回射標記,而EM追蹤器將傳感器嵌入近端。然后,我們使用觸控筆測試追蹤器的位置測量精度和距離測量精度。,我們評估了由EM追蹤的腹腔鏡和EM追蹤的LUS探頭組成的圖像引導系統的準確性。結果在使用標準評估板的實驗中,兩個光學追蹤器(Atracsys&NDI)在位置和方向測量中的抖動比EM追蹤器小。此外,光學追蹤器在測試體積內顯示出更好的方向測量一致性。但是,它們的相對位置測量精度會隨著距離的增加而顯著降低,而EM追蹤器的性能卻是穩定的。在50mm的距離處,兩個光學追蹤器(Atracsys&NDI)的RMS誤差分別為,而EM追蹤器的RMS誤差為。在250mm距離處,兩個光學追蹤器(Atracsys&NDI)的RMS誤差分別變為,而EM追蹤器的RMS誤差為。在使用觸控筆的實驗中,兩個光學追蹤器(Atracsys&NDI)在定位觸控筆筆尖時的RMS誤差為,EM追蹤器為。我們的電磁追蹤腹腔鏡和LUS系統組合的原型使用代表性的校準方法,顯示腹腔鏡的RMS點定位誤差為,LUS探頭的RMS點定位誤差為,前者的較大誤差主要是由于三角測量誤差造成的使用窄基線立體腹腔鏡時。河北雙目紅外光學公司浙江雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;
PSTBase光學定位導航系統PSTBase是為仿真解決方案打造的理想光學追蹤系統PSTBase光學定位導航系統是專為滿足追蹤距離從20厘米至3米的用戶需求而設計。PSTBase光學追蹤系統適用于醫療仿真、工業仿真(汽車仿真、飛機駕駛艙模擬器)、手術導航、動作捕捉、機器視覺等領域。PST定位導航系列產品均為預校準、即插即用的高精度雙目紅外光學系統。每臺PSTBase都是完全單獨的追蹤單元。可直接開箱使用,無需校準且捕捉攝像頭無需進行注冊。PSTBase的數據結果通過USB接口進行傳輸。也可通過以太網進行完全透明分享,只需在另外一臺電腦上安裝客戶軟件并進行連接。此外系統軟件采用抗干擾算法,如抖動處理、有效屏蔽可見光環境干擾等,進一步保證了系統精度。系統軟件采用圖形化界面,具有3D建模、標記點編輯、6D工具制作、API接口等功能。
PST光學定位(光學追蹤)使用實際物體進行3D交互和3D測量(即追蹤目標物),無需連線。追蹤目標是可以被PST光學定位儀(光學追蹤/光學追蹤)識別并確定3D位置和方向的物理對象。正如使用鼠標對指針進行2D定位一樣,目標物可用于對物體進行6自由度3D定位。以毫米精度對目標物的3D位置和方向(姿態)進行光學定位,從而確保無線操作。光學追蹤目標物示例該系統基于紅外(IR)照明,可以減少來自環境的可見光源的干擾。通過使用用反光標記點,可以將任何物體變為追蹤目標。也可以將IRLED用作標記點,通常稱為“活動標記點”。PST使用這些標記點來識別目標并重建其姿態。基本上,任何物理對象都可以用作追蹤目標,例如筆、立方體甚至玩具車。也可以使用其他光學定位系統經常使用的類似天線的目標物。1.被動反光標記點反光標記點用于將對象轉換為追蹤目標。PST使用這些標記點來識別對象位置并確定其姿勢。為了使PST能夠確定目標的位姿,必須使用至少四個標記點。標記點的大小確定比較好追蹤距離:對于,建議使用小直徑為7毫米的圓形或球型標記點。對于設定追蹤目標,PST可以使用平面反光標記點和球形標記點。反光標記點。支持平面和球形標記點。青海雙目紅外光學技術,可以咨詢位姿科技(上海)有限公司;
光學導航系統(ONS)利用物理光學測量的方法,通過測量導航裝置和參考表面之間的相對運動的程度(速度和距離),進而確定相對位置和姿態信息。狹義的相對導航指的是探測器相對位置的確定,而廣義的相對導航包括了探測器相對位置和姿態估計。相對導航是以測量探測器之間或者探測器與目標體之間相對距離、方位信息為基礎,進而確定出某一探測器相對于其他探測器或目標體的位置、姿態信息。通常,導航給出的是探測器在某一慣性參考系下的坐標、方位;而相對導航給出的是被導航探測器相對于非慣性系的位置坐標。相對導航技術隨著近距離的交會任務的實施而不斷地發展、完善起來。近距離高精度的相對導航技術在航天器編隊飛行、空中加油和探測器星際軟著陸中有著廣闊的應用前景。光學導航是借助于光學敏感器測量來確定航天器相對位置和姿態的一門技術,由于其導航精度較無線電導航更高,故又成為光學精確導航。光學相對導航技術的研究工作開始于上世紀60年代的美國,旨在為宇宙飛船交會對接提供精確的導航信息。在此后的30多年間,空間探測和活動對光電傳感器的需求口益迫切,美國、法國、日本、德國和加拿大等國先后發展了各種光電傳感器。雙目紅外光學醫療設備價格,可以咨詢位姿科技(上海)有限公司;江蘇的雙目紅外光學聯系地址
四川雙目紅外光學醫療設備價格,可以咨詢位姿科技(上海)有限公司;河南的雙目紅外光學公司聯系電話
醫用光學傳感器是傳感器中的重要成員。本文對光電倍增管、光纖和CCD這三種醫學常用的新型光學傳感器以及它們在醫學診斷中的應用情況加以簡要介紹。從它們的科學性和實用性可以表明醫用光學傳感器廣闊的發展前景。醫用傳感器是醫學測量儀器的環節,是醫學儀器與人體直接耦合關鍵的器件。可以說,它在從定性醫學走向定量醫學發展過程中起到了重要的作用。光學傳感器是從物理傳感器中發展起來的,而在其與醫學相結合的應用方面更有待于進一步完善和推廣。光學傳感器是將光信號轉換成電信號的器件,它的突出優點是:速度快、靈敏度高、結構簡單以及由于具有很強的抗干擾能力而形成的高可靠性。1.光電倍增管光電倍增管主要用于放射醫學的測量儀器。它是根據光電效應原理制成的,屬于外光電效應器件,其內部有一個易于發生光電效應的陰極、一個陽極和若干個中間電極(通常為7~11個,它們的電勢一個比一個高約100V左右)。γ射線射到熒光體,且使其產生熒光,熒光通過光敏層、反射體等,收集發射到陰極上并能夠打出一些光電子,其數量與光強度成正比。這些光電子經過中間電極的加速和逐級增加二次電子后,落到陽極上的二次電子比陰極發射的光電子增加了幾百萬倍。河南的雙目紅外光學公司聯系電話
位姿科技(上海)有限公司位于上海市奉賢區星火開發區蓮塘路251號8幢,交通便利,環境優美,是一家貿易型企業。公司是一家私營獨資企業企業,以誠信務實的創業精神、專業的管理團隊、踏實的職工隊伍,努力為廣大用戶提供***的產品。公司業務涵蓋光學定位,光學導航,雙目紅外光學,光學追蹤,價格合理,品質有保證,深受廣大客戶的歡迎。位姿科技以創造***產品及服務的理念,打造高指標的服務,引導行業的發展。