在科研領域,GNSS 模擬器為眾多研究提供有力支持。在地球物理學研究中,利用模擬器可模擬不同地球物理條件下的衛星信號,研究電離層、對流層變化對信號傳播的影響,助力深入了解地球大氣結構與動力學。在天文學研究中,通過模擬衛星信號在星際空間的傳播,探索信號受太陽風、引力場等因素干擾情況,為星際導航研究提供數據支撐。在新型定位算法研究方面,科研人員借助模擬器生成大量不同場景的衛星信號數據,用于訓練和驗證新算法,如基于深度學習的定位算法,以提升定位精度和抗干擾能力。GNSS 模擬器還為量子導航等前沿研究提供了地面測試平臺,模擬量子態下衛星信號接收與處理,推動導航技術的創新發展。GPS 衛星模擬器模擬衛星姿態變化,影響信號發射方向。室內gnss衛星模擬器
GNSS 模擬器具備多項獨特技術特點。首先是高精度信號生成能力,能夠精確模擬衛星信號的載波相位、偽距等參數,誤差可控制在極小范圍內,滿足不錯科研及軍方領域對高精度測試的需求。其次,其靈活性強,可通過軟件設置模擬不同衛星系統,如 GPS、北斗、GLONASS 等,還能隨意組合衛星信號,模擬全球任意地點、任意時間的衛星分布情況。再者,模擬器支持多通道并行模擬,能同時輸出多個衛星信號通道,真實模擬實際接收環境中多顆衛星信號同時存在的場景。另外,具備復雜環境模擬功能,如模擬信號多路徑傳播、電離層和對流層延遲等干擾,為接收機在復雜環境下的性能測試提供有效手段。室內gnss衛星模擬器GPS 導航模擬器模擬復雜路況,優化車載導航系統體驗。
GNSS 模擬器可分為射頻(RF)模擬器和中頻(IF)模擬器。射頻模擬器直接生成與真實 GNSS 衛星發射頻率相同的射頻信號,通常涵蓋 GPS L1、L2、L5 頻段,以及北斗、GLONASS 等其他系統對應頻段。其優勢在于能直接模擬衛星信號在空中傳播后的真實狀態,無需接收機進行額外的下變頻處理,適用于對接收機前端射頻性能測試,如天線性能、射頻濾波器效果評估等。而中頻模擬器輸出的是經過下變頻后的中頻信號,頻率一般在幾百兆赫茲以下。這種類型便于進行信號處理算法的測試與驗證,因為中頻信號更易于被數字信號處理設備采集和分析,開發人員可專注于研究信號解算、定位算法等重心功能。
信號生成基礎:GNSS 信號模擬器首要任務是生成基礎信號。它基于精確的數學算法,模擬衛星在太空中的運動軌跡。以 GPS 系統為例,依據開普勒定律等軌道力學知識,計算出衛星在不同時刻的精確位置。同時,內置高精度時鐘模型,模擬衛星攜帶的原子鐘信號。通過這些復雜的運算,得到每個衛星對應的偽隨機噪聲(PRN)碼序列起始點。這些 PRN 碼如同衛星的獨特 “指紋”,每個衛星都有專屬序列。將衛星位置信息、時鐘信息與 PRN 碼信息相結合,利用數字信號處理器(DSP)生成較初的數字基帶信號,為后續模擬真實衛星信號奠定基礎。GNSS 軌跡模擬器生成不規則軌跡,模擬野生動物遷徙路徑。
提升 GNSS 模擬器精度是關鍵目標。在硬件方面,采用更高精度的時鐘源,如氫原子鐘,其超高的時間穩定性可降低信號時間同步誤差。優化射頻電路設計,選用低噪聲放大器、高精度濾波器等組件,減少信號傳輸過程中的噪聲干擾與失真。在軟件算法上,不斷改進軌道預測模型,考慮更多的攝動因素,如太陽光壓攝動、地球潮汐攝動等,提高衛星軌道模擬精度。對于誤差模擬算法,利用更精確的大氣模型,如全球電離層圖模型(GIM)、高精度對流層模型等,減小電離層和對流層延遲誤差模擬的偏差。此外,通過增加信號通道數量,模擬更多衛星信號,采用多頻點信號融合技術,提升定位精度,為高精度應用領域提供更可靠的測試環境。GPS 信號模擬器優化信號調制方式,提高信號傳輸效率。gnss衛星模擬器廠家
GPS 軌跡模擬器設置不同時間間隔,分析軌跡精度。室內gnss衛星模擬器
除了基礎的導航信號模擬,GNSS 導航模擬器還具備多種拓展功能。一些模擬器支持多系統聯合模擬,不能同時模擬 GPS、北斗、GLONASS 等多個衛星導航系統的信號,還能模擬不同系統信號之間的相互干擾與協同工作情況,為多系統融合導航設備的研發提供多方面測試。部分模擬器具備信號干擾模擬功能,可生成窄帶干擾、寬帶干擾等多種干擾信號,與正常 GNSS 信號疊加,測試接收機在干擾環境下的抗干擾能力與定位穩定性。此外,有的模擬器還能模擬時間同步信號,用于測試對時間精度要求極高的應用場景,如電力系統的時間同步設備。室內gnss衛星模擬器